MicroRNA-21-3p, a Berberine-Induced miRNA, Directly Down-Regulates Human Methionine Adenosyltransferases 2A and 2B and Inhibits Hepatoma Cell Growth

نویسندگان

  • Ting-Fang Lo
  • Wei-Chung Tsai
  • Shui-Tein Chen
چکیده

Methionine adenosyltransferase (MAT) is the cellular enzyme that catalyzes the synthesis of S-adenosylmethionine (SAM), the principal biological methyl donor and a key regulator of hepatocyte proliferation, death and differentiation. Two genes, MAT1A and MAT2A, encode 2 distinct catalytic MAT isoforms. A third gene, MAT2B, encodes a MAT2A regulatory subunit. In hepatocellular carcinoma (HCC), MAT1A downregulation and MAT2A upregulation occur, known as the MAT1A:MAT2A switch. The switch is accompanied with an increasing expression of MAT2B, which results in decreased SAM levels and facilitates cancer cell growth. Berberine, an isoquinoline alkaloid isolated from many medicinal herbs such as Coptis chinensis, has a wide range of pharmacological effects including anti-cancer effects. Because drug-induced microRNAs have recently emerged as key regulators in guiding their pharmacological effects, we examined whether microRNA expression is differentially altered by berberine treatment in HCC. In this study, we used microRNA microarrays to find that the expression level of miR-21-3p (previously named miR-21*) increased after berberine treatment in the HepG2 human hepatoma cell line. To predict the putative targets of miR-21-3p, we integrated the gene expression profiles of HepG2 cells after berberine treatment by comparing with a gene list generated from sequence-based microRNA target prediction software. We then confirmed these predictions through transfection of microRNA mimics and a 3' UTR reporter assay. Our findings provide the first evidence that miR-21-3p directly reduces the expression of MAT2A and MAT2B by targeting their 3' UTRs. In addition, an overexpression of miR-21-3p increased intracellular SAM contents, which have been proven to be a growth disadvantage for hepatoma cells. The overexpression of miR-21-3p suppresses growth and induces apoptosis in HepG2 cells. Overall, our results demonstrate that miR-21-3p functions as a tumor suppressor by directly targeting both MAT2A and MAT2B, indicating its therapeutic potential in HCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells

Human glioblastoma multiforme (GBM) is a malignant solid tumor characterized by severe hypoxia. Autophagy plays a protective role in cancer cells under hypoxia. However, the microRNA (miRNA)-related molecular mechanisms underlying hypoxia-reduced autophagy remain poorly understood in GBM. In this study, we performed a miRNA microarray analysis on GBM cells and found that numerous miRNAs were di...

متن کامل

A Genotoxic Stress-Responsive miRNA, miR-574-3p, Delays Cell Growth by Suppressing the Enhancer of Rudimentary Homolog Gene in Vitro

MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiatio...

متن کامل

miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200

Cervical cancer (CC) is a malignant solid tumor, which is one of the main causes of morbidity and mortality in women. Persistent High-risk human papillomavirus (hrHPV) infection is closely related to cervical cancer and autophagy has been suggested to inhibit viral infections. miRNAs have been reported to regulate autophagy in many solid tumors with many studies implicating miR-224-3p in the re...

متن کامل

Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199–dependent posttranscriptional mechanism

Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor secreted primarily by mesenchymal cells with effects on cells expressing its receptor, Met. HGF promotes normal tissue regeneration and inhibits fibrotic remodeling in part by promoting proliferation and migration of endothelial and epithelial cells and protecting these cells from apoptosis. HGF also inhibits myofibroblast...

متن کامل

MicroRNA-454-3p inhibits cervical cancer cell invasion and migration by targeting c-Met

Increasing evidence has demonstrated that microRNAs (miRNAs) have a crucial role in the initiation and progression of tumors. The present study aimed to investigate the expression and the role of miRNA-454-3p in human cervical cancer. Human cervical cancer cells were transfected with miRNA-454-3p mimics or negative control miRNA. MTT, Transwell and wound healing assays were performed to investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013